NOIX DE MUSCADE POUR PRÉPARATIONS HOMÉOPATHIQUES

NUX MOSCHATA POUR PRÉPARATIONS HOMÉOPATHIQUES

Myristica fragrans ad praeparationes homoeopathicas

DÉFINITION

Amande séchée de la graine de Myristica fragrans Houtt.

Teneur: au minimum 50,0 mL/kg d'huile essentielle (drogue anhydre).

CARACTÈRES

Odeur aromatique caractéristique.

IDENTIFICATION

- A. Amande ovoïde arrondie, privée de son tégument, recouverte ordinairement d'une poussière calcaire, mesurant en moyenne 25 mm à 30 mm de longueur sur 15 mm à 18 mm de diamètre ; surface gris-rouge, marquée de nombreux sillons anastomosés et d'une rainure étroite qui s'étend du hile à la chalaze, sur le côté le moins convexe ; section longitudinale montrant près du hile un petit embryon à cotylédons évasés en coupe ; reste de l'amande formé par la masse très considérable de l'albumen, d'aspect cireux et gris-brun, dans lequel s'enfoncent des prolongements du tégument séminal formant des lignes brunes sinueuses lui communiquant un aspect ruminé.
- B. Réduisez la noix de muscade en poudre (355). La poudre est gris-vert. Examinez au microscope en utilisant de la solution d'hydrate de chloral R. La poudre présente les éléments suivants : fragments d'albumen dont les cellules présentent parfois un contenu rouge ; nombreux globules d'huile de couleur jaune. Examinez au microscope en utilisant une solution de glycérol R à 50 pour cent V/V. La poudre présente de nombreux grains d'amidon sphériques de 5 μm à 7 μm de diamètre, généralement en groupes de 3 à 4 éléments.
- C. Chromatographie sur couche mince (2.2.27).

Solution à examiner. A 3 g de noix de muscade pulvérisée (355), ajoutez 30 mL d'éthanol à 65 pour cent V/V R, puis chauffez à reflux pendant 30 min. Refroidissez et filtrez.

Solution témoin (a). Dissolvez 10 µL d'aldéhyde anisique R et 20 mg de vanilline R dans 10 mL de méthanol R.

Solution témoin (b). Dissolvez 10 mg de thymol R et 10 mg de β -sitostérol R dans 10 mL d'éthanol à 96 pour cent R.

Plaque : plaque au gel de silice GF₂₅₄ pour CCM R.

Phase mobile: éther isopropylique R, toluène R (20:80 V/V).

Dépôt : 40 μL de solution à examiner et 5 μL de chaque solution témoin, en bandes.

Développement : sur un parcours de 10 cm.

Séchage : à l'air.

Détection A: examinez en lumière ultraviolette à 254 nm.

Résultats A : voir ci-dessous la séquence des bandes d'atténuation de fluorescence présentes dans les chromatogrammes obtenus avec la solution témoin (a) et la solution à examiner. Par ailleurs, d'autres bandes d'atténuation de fluorescence de faible intensité peuvent être présentes dans le chromatogramme obtenu avec la solution à examiner.

Haut de la plaque		
	Une bande sombre	
	Une bande sombre	
Aldéhyde anisique : une bande sombre		
	Une bande sombre	
Vanilline : une bande sombre		
	Une bande sombre	
	Une bande sombre	
Solution témoin (a)	Solution à examiner	

Détection B: pulvérisez la solution d'aldéhyde anisique R et chauffez à 100-105 °C pendant 5 min. Examinez à la lumière du jour.

Résultats B: voir ci-dessous la séquence des bandes présentes dans les chromatogrammes obtenus avec la solution témoin (b) et la solution à examiner. Par ailleurs, d'autres bandes de faible intensité peuvent être présentes dans le chromatogramme obtenu avec la solution à examiner.

Haut de la plaque		
	Une bande rose	
Thymol : une bande rose		
	Une bande rose	
	Une bande violette	
β-Sitostérol : une bande violette		
	Une bande violette	
Solution témoin (b)	Solution à examiner	

Les prescriptions générales et les monographies générales de la Pharmacopée européenne ainsi que le préambule de la Pharmacopée française s'appliquent.

ESSAI

Eau (2.2.13): au maximum 7,0 pour cent, déterminé par entraînement sur 50,0 g de noix de muscade pulvérisée (180).

Cendres totales (2.4.16): au maximum 2,5 pour cent.

DOSAGE

Effectuez la détermination des huiles essentielles dans les drogues végétales (2.8.12). Utilisez 15,0 g de noix de muscade, un ballon de 1000 mL et 300 mL d'eau R comme liquide d'entraînement. Distillez à un débit de 3 mL/min à 4 mL/min pendant 3 h, avec 0,50 mL de xylène R dans le tube gradué.

SOUCHE

DÉFINITION

Teinture mère de noix de muscade préparée à la teneur en éthanol de 65 pour cent V/V, à partir de l'amande séchée de la graine de *Myristica fragrans* Houtt.

Teneur: au minimum 0,08 pour cent m/m de myristicine ($C_{11}H_{12}O_3$; M_r 192,2).

PRODUCTION

Méthode 1.1.10 (2371). Drogue concassée extemporanément. Durée de macération : 3 à 5 semaines.

CARACTÈRES

Aspect : liquide jaune à jaune-orangé.

Odeur aromatique caractéristique.

IDENTIFICATION

Chromatographie sur couche mince (2.2.27).

Solution à examiner. Teinture mère.

Solution témoin (a). Dissolvez 10 μL d'aldéhyde anisique R et 20 mg de vanilline R dans 10 mL de méthanol R.

Solution témoin (b). Dissolvez 10 mg de thymol R et 10 mg de β -sitostérol R dans 10 mL d'éthanol à 96 pour cent R.

Plaque : plaque au gel de silice GF_{254} pour CCM R.

Phase mobile: éther isopropylique R, toluène R (20:80 V/V).

Dépôt: 40 µL de solution à examiner et 5 µL de chaque solution témoin, en bandes.

Développement : sur un parcours de 10 cm.

Séchage : à l'air.

Détection A: examinez en lumière ultraviolette à 254 nm.

Résultats A: voir ci-dessous la séquence des bandes d'atténuation de fluorescence présentes dans les chromatogrammes obtenus avec la solution témoin (a) et la solution à examiner. Par ailleurs, d'autres bandes d'atténuation de fluorescence de faible intensité peuvent être présentes dans le chromatogramme obtenu avec la solution à examiner.

Haut de la plaque		
	Une bande sombre	
	Une bande sombre	
Aldéhyde anisique : une bande sombre		
	Une bande sombre	
Vanilline : une bande sombre		
	Une bande sombre	
	Une bande sombre	
Solution témoin (a)	Solution à examiner	

Détection B : pulvérisez la solution d'aldéhyde anisique R et chauffez à 100-105 °C pendant 5 min. Examinez à la lumière du jour.

Résultats B: voir ci-dessous la séquence des bandes présentes dans les chromatogrammes obtenus avec la solution témoin (b) et la solution à examiner. Par ailleurs, d'autres bandes de faible intensité peuvent être présentes dans le chromatogramme obtenu avec la solution à examiner.

Haut de la plaque		
	Une bande rose	
Thymol : une bande rose		
	Une bande rose	
	Une bande violette	
β-Sitostérol : une bande violette		
	Une bande violette	
Solution témoin (b)	Solution à examiner	

ESSAI

Éthanol (2.9.10): 60 pour cent V/V à 70 pour cent V/V.

Résidu sec (2.8.16): au minimum 0,5 pour cent m/m.

DOSAGE

Chromatographie en phase gazeuse (2.2.28).

Solution d'étalon interne. Dissolvez 120,0 mg de camphre R et complétez à 100,0 mL avec de l'éthanol à 65 pour cent V/V R.

Solution à examiner. Prélevez 2,000 g de teinture mère ajoutez 2,0 mL de la solution d'étalon interne et complétez à 20,0 mL avec de l'éthanol à 65 pour cent V/V R.

Solution témoin. Dissolvez 20,0 mg de *myristicine R dans de* l'éthanol à 96 pour cent R et complétez à 25,0 mL avec le même solvant. Prélevez 4,0 mL de cette solution, ajoutez 2,0 mL de la solution d'étalon interne et complétez à 20,0 mL avec de l'éthanol à 65 pour cent V/V R.

Colonne:

- matériau : silice fondue,

- dimensions : $I = 30 \text{ m}, \varnothing = 0,53 \text{ mm},$

– phase stationnaire: macrogol 20 000 R (épaisseur du film 1,33 μm).

Gaz vecteur : hélium pour chromatographie R.

Débit : 1,5 mL/min. Température :

	Intervalle (min)	Température (°C)
Colonne	0 – 25	80 → 130
	25 – 43	$130 \rightarrow 220$
	43 – 59	220
Chambre à injection		220
Détecteur		250

Détection: ionisation de flamme.

Injection: 1 µL.

Temps de rétention : camphre : environ 8 min, myristicine : environ 35 min.

Ordre d'élution : camphre, myristicine.

Calculez la teneur pour cent m/m en myristicine de la teinture mère, à l'aide l'expression :

$$\frac{A_1 \times A'_{El} \times m_2 \times 0, 16 \times p}{A_2 \times A_{El} \times m_1}$$

 A_1 = aire du pic correspondant à la myristicine dans le chromatogramme obtenu avec la solution à examiner,

 A_2 = aire du pic correspondant à la myristicine dans le chromatogramme obtenu avec la solution témoin,

 A_{El} = aire du pic correspondant à l'étalon interne dans le chromatogramme obtenu avec la solution à examiner,

 A'_{EI} = aire du pic correspondant à l'étalon interne dans le chromatogramme obtenu avec la solution témoin,

 m_1 = masse de la prise d'essai de teinture mère dans la solution à examiner, en grammes,

 m_2 = masse de la prise d'essai de myristicine dans la solution témoin, en grammes,

p = teneur pour cent de myristicine dans la myristicine R.