

Ce module de formation optionnel est destiné aux utilisateurs qui souhaitent utiliser la quantification en complément de leur interprétation visuelle des images Vizamyl.

L'objectif de ce module de formation additionnel et d'accompagner l'utilisation de la quantification dans l'interprétation des images en complément de l'analyse visuelle. Ce module vise à présenter des principes de base régissant l'utilisation de la quantification dans l'interprétation des images mais n'a pas vocation à remplacer la formation dispensée par les fournisseurs de logiciels marqués CE pour la quantification de l'imagerie amyloïde.

Le lecteur doit également avoir complété la formation générale pour l'interprétation visuelle des images Vizamyl[™]

Les principales informations concernant l'analyse quantitative des images Flutemetamol (18F) sont disponibles dans les sections 4.4. et 5.1 du RCP

*

L'évaluation quantitative de l'intensité du signal radioactif cortical par un logiciel validé et marqué CE peut être utilisée pour aider à l'estimation visuelle de la distribution du signal radioactif. Un tel logiciel fournit un calcul de la charge amyloïde cérébrale en divisant l'intensité moyenne de l'image dans les régions corticales associées à des dépôts amyloïdes par l'intensité moyenne de l'image dans une région de référence comme le pont de Varole. Cette mesure est appelée le rapport de valeurs de fixation normalisée (Standard Uptake Value Ratio ou SUVR)

*

Des lectures visuelles dichotomiques d'images au flutémétamol (F) ont été validées vis-à-vis de la limite entre une densité très faible et modérée de plaques neuritiques. Il a été déterminé qu'une valeur seuil de SUVR de 0,59 à 0,61 issue d'un logiciel marqué CE utilisant le pont de Varole comme référence donnait une très haute concordance avec les lectures visuelles et pouvait être utilisée comme aide à la lecture visuelle.

Les lecteurs doivent interpréter l'image visuellement et ensuite réaliser l'analyse de quantification selon les instructions du fabricant incluant les contrôles de qualité pour le processus de quantification. Les résultats de quantification doivent être comparés à l'interprétation visuelle, en prêtant attention aux intervalles attendus pour une image positive ou négative.

*

Si les valeurs de quantification sont incohérentes avec l'interprétation visuelle, le lecteur doit :

 Vérifier le positionnement des régions d'intérêt (ROIs) sur l'image cérébrale.
Les régions doivent être placées dans la substance grise du cerveau de manière à ce que les ROIs n'incluent pas le LCR ou des zones significatives de substance blanche.

et

 Vérifier le positionnement des régions de référence pour s'assurer que celles-ci sont bien ajustées. Ensuite, examiner l'apparence de la région de référence en recherchant toute anomalie de structure ou zones de perfusion réduite

*

Dans le cas d'une lecture visuelle positive et d'un résultat de quantification négatif ou limite, une comparaison doit être faite entre les régions montrant une positivité visuelle et la zone équivalente échantillonnée par une région de référence. Dans le cas où la fixation du traceur est très focalisée, il se peut que la région de référence échantillonne une région plus grande et que la moyenne de la région de référence donne un résultat négatif. De plus, une lecture visuelle peut être conduite de manière à éviter les régions atrophiées, alors qu'une quantification pourra inclure ces régions.

Dans le cas d'une lecture visuelle négative et d'un résultat de quantification positif, la région de référence doit être inspectée et lorsque il existe un doute sur le bon positionnement de la région de référence ou qu'une réduction de la fixation est avéré, une région alternative doit être utilisée (le logiciel peut accepter un certain nombre de régions de référence différentes). De plus, le positionnement des régions de référence corticales doit être vérifié pour déterminer si de la substance blanche est présente dans l'échantillonnage, ce qui pourrait augmenter les valeurs de quantification.

Il convient de souligner que l'analyse visuelle est la principale méthode d'interprétation des images, mais les lecteurs peuvent choisir de compléter l'analyse avec un logiciel quantitatif lorsqu'ils le jugent approprié. L'utilisation de logiciels quantitatifs peut être utile dans les cas suivants :

Nouveaux lecteurs

Confiance faible dans l'interprétation des images

Cas proches des seuils de la pathologie

Evaluation d'une région corticale par rapport à l'ensemble de la fixation corticale (par exemple lorsque la majorité des régions sont visuellement négatives et qu'une seule région apparaît positive)

Les utilisateurs doivent être familiarisés avec l'unité de mesure de la charge amyloïde utilisées dans les logiciels marqués CE.

Les Standard uptake volume ratios (SUVr) sont :

Une méthode simplifiée basée sur le calcul du rapport entre une région cible et une région de référence dans une image statique tardive (SUVr)** Les régions cibles peuvent être un ensemble de régions corticales ou de régions individuelles

Les régions de référence ont une pathologie amyloïde minimale et peuvent inclure le cortex cérébelleux, le cervelet entier ou le pont

Les Z-scores sont un autre moyen d'établir si la fixation du traceur amyloïde PET est supérieure à la normale

La definition d'un Z-score est la suivante :

Fixation amyloïde en termes numériques relatives à la moyenne d'un ensemble d'images normales. La mesure représente le nombre d'écarts-types par rapport à la moyenne

Sur la base d'un ensemble d'images normales négatives, une image moyenne (NIDAve) et une image d'écart-type (NIDSD) sont créées

L'image du patient (Pat) est alors comparée à cette base de données normales de référence.

Les Z-scores sont basés sur les unités SUVr et peuvent être calculés pour les ensemble de régions corticale ou pour les régions individuelles

Un Z-score >2.5 indiquerait un résultat anormal (positif) lors de l'analyse des régions individuelles

alyse	quantitative						
omp cac	araisons de la lecture visuelle par rapport à la quantification dans lre d'études cliniques utilisant un logiciel marqué CE						
		Thurfjell et al 2014	Leuzy et al 2019				
	Population de l'étude	Volontaires sains (contrôles) Patients MCI (Mild Cognitive Impairment) Maladie d'Alzheimer probable	Patients des Cliniques de la mémoire				
	n	172	207	Total = 379			
	% de concordance entre les résultats visuels et de quantification	170/172 = 98.8%	205/207 = 99%				
	Logiciel marqué CE	Cortex ID	Hermes Brass				

La fiabilité de l'utilisation d'informations quantitatives en complément de l'analyse visuelle a été analysée dans deux études cliniques où la concordance entre les deux méthodes d'interprétation d'images a été mesurée.

Dans les deux études (n total = 379), un logiciel de quantification marqué CE de la plaque amyloïde a été utilisé et le pourcentage de concordance entre les lectures visuelles et la quantification était de 98,8% à 99%

Dans la première étude, les seuils de quantification amyloïde ont été calculés par rapport à la confirmation post-mortem du statut amyloïde cérébral en tant que gold-standard (à partir de la cohorte d'autopsie de l'étude clinique pivot n = 68) et une cohorte de volontaires sains de n = 105 volontaires utilisée pour définir la plage de référence pour les mesures quantitatives normales

Ces seuils ont été utilisés pour classer une cohorte test de 172 patients (33 maladies d'Alzheimer probables, maladies d'Alzheimer, 80 MCI amnésiques et 59 volontaires sains) en 2 categories négative ou positive, et ont été compares à la classification par lecture visuelle. La concordance était de 98.8% (170/172 scans).

Dans la deuxième étude, dans le but d'étudier l'impact de l'imagerie TEP amyloïde au Flutémétamol (18F) sur la prise en charge diagnostique et

thérapeutique d'une cohorte de patients d'une Clinique de la mémoire, 207 images de patients ont été interprétées visuellement ou par un logiciel de quantification marqué CE, avec une concordance de 99 % (205/207 scans) entre les deux méthodes.

Exemples de logiciels de quantification marqués CE qui peuvent être utilises dans l'imagerie TET amyloïde.

Consuter les fabriquants pour une formation détaillée sur chaque outil logiciel.

Voici quelques étapes génériques effectuées lors de l'utilisation d'un logiciel d'analyse d'image

- L'image TEP doit être transformée dans un espace standard (e.g. MNI)
- Les volumes d'intérêts (VOIs) corticaux et de référence doivent être appliqués sur l'image TEP amyloïde
- Le SUVr mesuré est calculé en divisant la fixation cortical par la region de référence
- Si le logiciel contient une base de données normales, les Z-scores peuvent être calculés et affichés sur une région du cerveau
- Le rapport est généré pour les mesures de chaque région ou ensemble de régions

A	nalyse quantitative						
G	iuide d'interp	rétation des images Flutémétamol (18F) avec analyse visuelle et quantitative					
	Problème	Détail	Mesures correctives	Interprétation			
1	Positionnement des volumes d'intérêt	Un mauvais placement des volumes d'intérêt (VOI) pour une région d'intérêt ou pour la région de référence peut fausser l'évaluation quantitative	Vérifier que les VOI des régions d'intérêt et de référence sont bien positionnés	La quantification peut compléter l'évaluation visuelle dans ces cas une fois que les régions d'intérêt et de référence ont été vérifiées			
2	Atrophie locale	L'atrophie du cortex peut réduire le signal TEP régional et, par conséquent, la quantification peut sous-représenter la fixation du Flutémétamol (18F)	Utiliser les images anatomiques IRM ou CT pour identifier les zones atrophiées et corriger le positionnement des VOI. Se référer à la formation d'interprétation visuelle des images pour les régions moins susceptibles d'être atrophiées	L'analyse visuelle d'une image peut confirmer la présence d'atrophie. Les méthode de quantification automatique peuvent alors être moins utile.			
3	Ventricules élargies	La ventriculomégalie/ventricules élargis réduisent le ruban cortical ce qui rend le signal cortical global difficile à examiner	Utiliser les images anatomiques IRM ou CT pour aider à différencier la substance blanche de la substance grise. Vérifier de nouveau le positionnement des VOI pour exclure une fixation non-spécifique de la substance blanche	La quantification peut supporter l'analyse visuelle dans ces cas une fois que les IRM/CT et les VOI ont pu être vérifiés.			
4	Fixation amyloïde régionale versus fixation globale	Quelques sujets montrent une fixation positive du Flutémétamol (18F) dans une seule région (par exemple dans le striatum ou le précunéus / cingulaire postérieur). Une analyse quantitative globale moyenne pourrait donner un résultat négatif, car ne prendra pas suffisamment en compte la région positive visuellement	Comme précisé dans la formation à l'interprétation des images, chacune des 5 régions doit toujours être évaluée visuellement dans les coupes appropriées avant de conclure sur une image négative ou positive.	Une mesure quantitative seul aura rendu l'image négative alors qu'il y avait une région positive. L'analyse visuelle reste la première méthode à utiliser, la quantification apportant un support complémentaire.			
5	Fixation amyloïde équivoque	Les niveaux de charge amyloïde proches des limites entre négatif et positif peuvent réduire la confiance de l'analyse visuelle seule	Vérifier les positions des VOI pour optimiser le résultat de la quantification	La quantification se positionne ici en support à l'analyse visuelle			

Cette diapositive résume les conseils d'interprétation des images Flutémétamol (18F) en analyse visuelle complétée de la quantification lorsque des problèmes sont soulevés et qui nécessitent une attention particulière. Il y a notamment 5 points qui peuvent être discutés:

Le 1er est le positionnement correct des volumes d'intérêt pour les régions d'intérêt à quantifier et pour les régions de référence. Leur bon positionnement doit être vérifié pour assurer une mesure quantitative correcte.

Deuxièmement, une atrophie locale peut réduire le signal TEP dans une région, et les VOI peuvent être trop large pour la région observée, rendant la mesure quantitative incorrecte. L'analyse visuelle de l'image et du positionnement des VOI est là encore nécessaire.

Troisièmement, il peut y avoir des ventricules élargis qui réduisent le ruban cortical ce qui rend le signal cortical global difficile à analyser. Dans ces cas, les images anatomiques IRM ou CT seront nécessaire pour mieux repérer la substance grise. La 4^{ème} situation qui peut se présenter est qu'une seule des 5 régions présente un signe de fixation amyloïde positive alors que l'ensemble de l'image apparaît négative à la quantification. Ces cas permettent de rappeler qu'une analyse visuelle avec revue systématique des 5 régions doit être effectuée avant toute quantification.

Enfin, la charge amyloïde peut être proche des limites entre négatif et positif ce qui peut réduire la confiance de l'analyse visuelle seule. Dans ces cas, une fois avoir vérifier le bon positionnement des VOI, la quantification peut apporter une information complémentaire à l'analyse visuelle.

Cette diapositive illustre les 5 exemples décrits sur la page précédente.

 Pour le cas du positionnement des VOI, on voit exemple où le VOI de la région de référence est plus large (flèches blanches en 1^{ère} colonne) que l'image

2) La 2^{ème} image montre un exemple d'image avec atrophie dans le cortex cingulaire antérieur, les lobes frontaux, le cortex frontal inférieur (R), le cortex temporal supérieur (L). IRM et CT peuvent identifier les zones d'atrophies et permettre un bon positionnement des VOI

3) Les Ventricules élargis réduisent la taille du ruban cortical et là encore un bon positionnement des VOI est nécessaire pour éviter d'inclure un signal TEP de la substance blanche non spécifique. Dans ce cas-là, il y a une fixation claire montrée par les images Z-score au niveau des lobes temporaux latéraux

4) L'image 4 montre une fixation asymétrique du Flutémétamol(18F) dans le lobe frontal que l'on retrouve dans l'image Z-score en dessous. Ce cas de positivité régionale sur un seul côté du lobe frontal montre l'intérêt d'une revue visuelle systématique des 5 régions comme recommandé dans le module de formation à l'interprétation des images Flutémétamol.

5) Enfin, la quantification a une réelle valeur ajoutée dans l'interprétation des images

lorsqu'il y a une fixation équivoque. L'image Z-score montre clairement une fixation dans les régions orbitofrontale et du cingulaire postérieur/précunéus.

Analyse quantitative					
En r	ésumé				
1.	La quantification peut être utilisée en complément de l'analyse visuelle				
2.	La concordance entre l'analyse visuelle et la quantification est généralement très élevée				
3.	Avant d'utiliser un logiciel de quantification, les utilisateurs doivent se référer à la formation proposée par le fabricant				
4.	En cas de discordance entre interprétation visuelle et quantitative, les utilisateurs doivent suivre les instructions données à la fin de ce module				

En résumé :

- La quantification peut être utilisée en complément de l'inspection visuelle
- La concordance entre l'analyse visuelle et la quantification est généralement très élevée
- Avant d'utiliser un logiciel de quantification, les utilisateurs doivent se référer à la formation proposée par le fabricant
- En cas de discordance entre interprétation visuelle et quantitative, les utilisateurs doivent suivre les instructions données à la fin de ce module